REVDANCATT'S GENUARY 2023

01 - Perfect loop / Infinite loop / endless GIFs

/*
 * A speed-improved perlin and simplex noise algorithms for 2D.
 *
 * Based on example code by Stefan Gustavson (stegu@itn.liu.se).
 * Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
 * Better rank ordering method by Stefan Gustavson in 2012.
 * Converted to Javascript by Joseph Gentle.
 *
 * Version 2012-03-09
 *
 * This code was placed in the public domain by its original author,
 * Stefan Gustavson. You may use it as you see fit, but
 * attribution is appreciated.
 *
 */
(function (global) {
  const module = global.noise = {}

  function Grad (x, y, z) {
    this.x = x
    this.y = y
    this.z = z
  }

  Grad.prototype.dot2 = function (x, y) {
    return this.x * x + this.y * y
  }

  Grad.prototype.dot3 = function (x, y, z) {
    return this.x * x + this.y * y + this.z * z
  }

  const grad3 = [new Grad(1, 1, 0), new Grad(-1, 1, 0), new Grad(1, -1, 0), new Grad(-1, -1, 0),
    new Grad(1, 0, 1), new Grad(-1, 0, 1), new Grad(1, 0, -1), new Grad(-1, 0, -1),
    new Grad(0, 1, 1), new Grad(0, -1, 1), new Grad(0, 1, -1), new Grad(0, -1, -1)
  ]

  const p = [151, 160, 137, 91, 90, 15,
    131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21,
    10,
    23,
    190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177,
    33,
    88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27,
    166,
    77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40,
    244,
    102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200,
    196,
    135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124,
    123,
    5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189,
    28,
    42,
    223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
    129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97,
    228,
    251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239,
    107,
    49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254,
    138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
  ]
  // To remove the need for index wrapping, double the permutation table length
  const perm = new Array(512)
  const gradP = new Array(512)

  // This isn't a very good seeding function, but it works ok. It supports 2^16
  // different seed values. Write something better if you need more seeds.
  module.seed = function (seed) {
    if (seed > 0 && seed < 1) {
      // Scale the seed out
      seed *= 65536
    }

    seed = Math.floor(seed)
    if (seed < 256) {
      seed |= seed << 8
    }

    for (let i = 0; i < 256; i++) {
      let v
      if (i & 1) {
        v = p[i] ^ (seed & 255)
      } else {
        v = p[i] ^ ((seed >> 8) & 255)
      }

      perm[i] = perm[i + 256] = v
      gradP[i] = gradP[i + 256] = grad3[v % 12]
    }
  }

  module.seed(0)

  /*
  for(var i=0; i<256; i++) {
      perm[i] = perm[i + 256] = p[i];
      gradP[i] = gradP[i + 256] = grad3[perm[i] % 12];
  } */

  // Skewing and unskewing factors for 2, 3, and 4 dimensions
  const F2 = 0.5 * (Math.sqrt(3) - 1)
  const G2 = (3 - Math.sqrt(3)) / 6

  const F3 = 1 / 3
  const G3 = 1 / 6

  // 2D simplex noise
  module.simplex2 = function (xin, yin) {
    let n0, n1, n2 // Noise contributions from the three corners
    // Skew the input space to determine which simplex cell we're in
    const s = (xin + yin) * F2 // Hairy factor for 2D
    let i = Math.floor(xin + s)
    let j = Math.floor(yin + s)
    const t = (i + j) * G2
    const x0 = xin - i + t // The x,y distances from the cell origin, unskewed.
    const y0 = yin - j + t
    // For the 2D case, the simplex shape is an equilateral triangle.
    // Determine which simplex we are in.
    let i1, j1 // Offsets for second (middle) corner of simplex in (i,j) coords
    if (x0 > y0) { // lower triangle, XY order: (0,0)->(1,0)->(1,1)
      i1 = 1
      j1 = 0
    } else { // upper triangle, YX order: (0,0)->(0,1)->(1,1)
      i1 = 0
      j1 = 1
    }
    // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
    // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
    // c = (3-sqrt(3))/6
    const x1 = x0 - i1 + G2 // Offsets for middle corner in (x,y) unskewed coords
    const y1 = y0 - j1 + G2
    const x2 = x0 - 1 + 2 * G2 // Offsets for last corner in (x,y) unskewed coords
    const y2 = y0 - 1 + 2 * G2
    // Work out the hashed gradient indices of the three simplex corners
    i &= 255
    j &= 255
    const gi0 = gradP[i + perm[j]]
    const gi1 = gradP[i + i1 + perm[j + j1]]
    const gi2 = gradP[i + 1 + perm[j + 1]]
    // Calculate the contribution from the three corners
    let t0 = 0.5 - x0 * x0 - y0 * y0
    if (t0 < 0) {
      n0 = 0
    } else {
      t0 *= t0
      n0 = t0 * t0 * gi0.dot2(x0, y0) // (x,y) of grad3 used for 2D gradient
    }
    let t1 = 0.5 - x1 * x1 - y1 * y1
    if (t1 < 0) {
      n1 = 0
    } else {
      t1 *= t1
      n1 = t1 * t1 * gi1.dot2(x1, y1)
    }
    let t2 = 0.5 - x2 * x2 - y2 * y2
    if (t2 < 0) {
      n2 = 0
    } else {
      t2 *= t2
      n2 = t2 * t2 * gi2.dot2(x2, y2)
    }
    // Add contributions from each corner to get the final noise value.
    // The result is scaled to return values in the interval [-1,1].
    return 70 * (n0 + n1 + n2)
  }

  // 3D simplex noise
  module.simplex3 = function (xin, yin, zin) {
    let n0, n1, n2, n3 // Noise contributions from the four corners

    // Skew the input space to determine which simplex cell we're in
    const s = (xin + yin + zin) * F3 // Hairy factor for 2D
    let i = Math.floor(xin + s)
    let j = Math.floor(yin + s)
    let k = Math.floor(zin + s)

    const t = (i + j + k) * G3
    const x0 = xin - i + t // The x,y distances from the cell origin, unskewed.
    const y0 = yin - j + t
    const z0 = zin - k + t

    // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
    // Determine which simplex we are in.
    let i1, j1, k1 // Offsets for second corner of simplex in (i,j,k) coords
    let i2, j2, k2 // Offsets for third corner of simplex in (i,j,k) coords
    if (x0 >= y0) {
      if (y0 >= z0) {
        i1 = 1
        j1 = 0
        k1 = 0
        i2 = 1
        j2 = 1
        k2 = 0
      } else if (x0 >= z0) {
        i1 = 1
        j1 = 0
        k1 = 0
        i2 = 1
        j2 = 0
        k2 = 1
      } else {
        i1 = 0
        j1 = 0
        k1 = 1
        i2 = 1
        j2 = 0
        k2 = 1
      }
    } else {
      if (y0 < z0) {
        i1 = 0
        j1 = 0
        k1 = 1
        i2 = 0
        j2 = 1
        k2 = 1
      } else if (x0 < z0) {
        i1 = 0
        j1 = 1
        k1 = 0
        i2 = 0
        j2 = 1
        k2 = 1
      } else {
        i1 = 0
        j1 = 1
        k1 = 0
        i2 = 1
        j2 = 1
        k2 = 0
      }
    }
    // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
    // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
    // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
    // c = 1/6.
    const x1 = x0 - i1 + G3 // Offsets for second corner
    const y1 = y0 - j1 + G3
    const z1 = z0 - k1 + G3

    const x2 = x0 - i2 + 2 * G3 // Offsets for third corner
    const y2 = y0 - j2 + 2 * G3
    const z2 = z0 - k2 + 2 * G3

    const x3 = x0 - 1 + 3 * G3 // Offsets for fourth corner
    const y3 = y0 - 1 + 3 * G3
    const z3 = z0 - 1 + 3 * G3

    // Work out the hashed gradient indices of the four simplex corners
    i &= 255
    j &= 255
    k &= 255
    const gi0 = gradP[i + perm[j + perm[k]]]
    const gi1 = gradP[i + i1 + perm[j + j1 + perm[k + k1]]]
    const gi2 = gradP[i + i2 + perm[j + j2 + perm[k + k2]]]
    const gi3 = gradP[i + 1 + perm[j + 1 + perm[k + 1]]]

    // Calculate the contribution from the four corners
    let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0
    if (t0 < 0) {
      n0 = 0
    } else {
      t0 *= t0
      n0 = t0 * t0 * gi0.dot3(x0, y0, z0) // (x,y) of grad3 used for 2D gradient
    }
    let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1
    if (t1 < 0) {
      n1 = 0
    } else {
      t1 *= t1
      n1 = t1 * t1 * gi1.dot3(x1, y1, z1)
    }
    let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2
    if (t2 < 0) {
      n2 = 0
    } else {
      t2 *= t2
      n2 = t2 * t2 * gi2.dot3(x2, y2, z2)
    }
    let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3
    if (t3 < 0) {
      n3 = 0
    } else {
      t3 *= t3
      n3 = t3 * t3 * gi3.dot3(x3, y3, z3)
    }
    // Add contributions from each corner to get the final noise value.
    // The result is scaled to return values in the interval [-1,1].
    return 32 * (n0 + n1 + n2 + n3)
  }

  // ##### Perlin noise stuff

  function fade (t) {
    return t * t * t * (t * (t * 6 - 15) + 10)
  }

  function lerp (a, b, t) {
    return (1 - t) * a + t * b
  }

  // 2D Perlin Noise
  module.perlin2 = function (x, y) {
    // Find unit grid cell containing point
    let X = Math.floor(x)
    let Y = Math.floor(y)
    // Get relative xy coordinates of point within that cell
    x = x - X
    y = y - Y
    // Wrap the integer cells at 255 (smaller integer period can be introduced here)
    X = X & 255
    Y = Y & 255

    // Calculate noise contributions from each of the four corners
    const n00 = gradP[X + perm[Y]].dot2(x, y)
    const n01 = gradP[X + perm[Y + 1]].dot2(x, y - 1)
    const n10 = gradP[X + 1 + perm[Y]].dot2(x - 1, y)
    const n11 = gradP[X + 1 + perm[Y + 1]].dot2(x - 1, y - 1)

    // Compute the fade curve value for x
    const u = fade(x)

    // Interpolate the four results
    return lerp(
      lerp(n00, n10, u),
      lerp(n01, n11, u),
      fade(y))
  }

  // 3D Perlin Noise
  module.perlin3 = function (x, y, z) {
    // Find unit grid cell containing point
    let X = Math.floor(x)
    let Y = Math.floor(y)
    let Z = Math.floor(z)
    // Get relative xyz coordinates of point within that cell
    x = x - X
    y = y - Y
    z = z - Z
    // Wrap the integer cells at 255 (smaller integer period can be introduced here)
    X = X & 255
    Y = Y & 255
    Z = Z & 255

    // Calculate noise contributions from each of the eight corners
    const n000 = gradP[X + perm[Y + perm[Z]]].dot3(x, y, z)
    const n001 = gradP[X + perm[Y + perm[Z + 1]]].dot3(x, y, z - 1)
    const n010 = gradP[X + perm[Y + 1 + perm[Z]]].dot3(x, y - 1, z)
    const n011 = gradP[X + perm[Y + 1 + perm[Z + 1]]].dot3(x, y - 1, z - 1)
    const n100 = gradP[X + 1 + perm[Y + perm[Z]]].dot3(x - 1, y, z)
    const n101 = gradP[X + 1 + perm[Y + perm[Z + 1]]].dot3(x - 1, y, z - 1)
    const n110 = gradP[X + 1 + perm[Y + 1 + perm[Z]]].dot3(x - 1, y - 1, z)
    const n111 = gradP[X + 1 + perm[Y + 1 + perm[Z + 1]]].dot3(x - 1, y - 1, z - 1)

    // Compute the fade curve value for x, y, z
    const u = fade(x)
    const v = fade(y)
    const w = fade(z)

    // Interpolate
    return lerp(
      lerp(
        lerp(n000, n100, u),
        lerp(n001, n101, u), w),
      lerp(
        lerp(n010, n110, u),
        lerp(n011, n111, u), w),
      v)
  }
})(this)

Project files


Home
Changelog
Page created in: 1ms